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1. Introduction. The object of this paper id to develop a theory of

periodic processes of sufficient generality that it can be applied to

systems defined by partial differential equations (distributed parameter

systcros) ' functional differential equations of retarded and neutral type

(hereditary systems), systems arising in the theory of elasticity, etc.

A large number of examples of autonomous processes (dynamical systems)

and more complete references can be found in the paper [ 1] by Hale.

There the principal objective was to obtain a generalized invariance

principle and to exploit this invI-..riar).ce to obtain a general stability

theory. The results in [ 1] were extended in [2] by Slemrod to periodic

dynamical systems and Dafermos in [3] gave an invariance principle for

compact processes which include periodic processes. Recent applications

of this stability theory can be found in [41471,

The purpose here is to develop in the spirit of the work

above a general and meaningful theory of dissipative periodic ,systems.

More specifically, we study the iterates of the period map T associated

with a class of dissipative periodic processes, prove that large iterates

of T always have fixed points, characterize and prove the existence and

stability of the maximal compact invariant set of T. Nonlinear or-

dinary differential equations which are periodic and dissipative were

studied by Levinson [8] in 1944 and more general results can be found in

[9], [101.9 [111. This paper also includes all of the results stated

in [12]. For ordinary differential equations, the period map T is

topological and the space is locally compact. However, for the appli-

cations we have in mind, the mapping may not be topological and the state

' 4 1
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spaces are not locally compact. Because of this and because we wish a

unified theory with a wide range of applications, the identification

of suitable hypotheses and their theory is by no means s trivial exer-

cise.

Section 2 is devoted to the definition and examples of pro-

cesses. Sections 3 and 4 contain the basic theory for a special class

of dissipative processes. Some indication is given in Section 3 of how

the theory relates to retarded functional differential equations,

neutral functional differential equations and partial differential equa-

tions. Applications of the theory and sufficient conditions for dissi-

pativeness in terms of Liapunov functions will be discussed in a Later

paper.

r
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2. Processes. Let R denote the re p i nwubers ' R+ the nonnegative

rea.l.s and let X be a Ba:nach space with norm 1 • 1 . Consider a mapping;

us R X X X R+ -► X and define a mapping U(a ' T): X -► X for each a e Rr

T e R+ by

U(v, T)x = u( OO XOT).

It is convenient +o interpret U(a^ T)x as the state of the system at

time a+T if initially the state of the system at time a was x. A

process on a Banach space X is a mapping us R X X X R+ -* X with the

following properties;

(2.1)	 u is continuous

(2.2)	 U(a,0) = Is the identity
	 '4 1

(2.3)	 U(0+s0T)U(aPs) : U(a$s+T)

..

Thus a process is essentially what was called in [2] a "generalized non.

autonomous dynamical system" and differs by the continuity condition on

u from what was called a process in t3a. The (ositive) motionor orbit

through (a,x) is U Ta;®U(a,T)x. A motion is said to be e^ riodic of

period a > 0 if U(as T+a) = U(a., T) for all T t 
R+.

A process is said to be era^c of period co > 0 if U(ar+w., T)

U(a$ T) for all a e R ,, T e R+. A process is said to be autonomous (or

the process is a dynamical syst if U(a,, T) = U(0p T) for all a e R,
T e R+.

♦1
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Let us now give some exnmpl.es of processes.

Exs^ nEle 2.1. OrdLnary differential equations. Suppose f: R X En --* En

is continuous and for any	 a c R' t E En , the solution cp(t^ a' 0, TOP as O

^, of the equation

3c = f(t,x)

exists for all t i 00 is unique and depends continuously upon

Uniqueness of the solution implies ep (t+TA, 9) = q)(t +T' t .9 cp ( t,aj t) ). There-

fore, if we let u( a, 9, T) _ rP(a+T,a, t), then u is a process on En.

Exm2le 2.2. Retarded̂  functional differential equations. Let r i 0-. r •^wr^-	 rr	 .rrr rrlr+lr r-a it—r r rww-ir

be given, C = C([-r.,0],En) be the space of continuous functions mapping

[-r,0] into En with the topology of uniform convergence. For any

continuous function x defined on [ -r ,,A), A > 0, and any t e [O,A),

let x  in C be defined by xt(9) = x(t+O) ., -r i 0 i 0. Suppose

f: R X C ->En is continuous, A function x = x(a,q)) defined and con-

tinuous on [ a-r,a+A), A > 00 is said to be a solution of the retarded

functional differential equation

(2.4)
	

SO) = f(tVxt)

t

00

,

`, 1

I

with initial value cp at a if xa = q) and x(t) satisfies (2.4)

for t e ( a, a+A ). For any (a,(P) e R X C. suppose a solution x(a,q) )

exists on [-r,c*),, is unique and x(a lcp)(t) depends continuously on

(v'(Q' t) . If u(a.,gP ,r T) : x,+T(aa,(p) , them u is a process on C. A

%a



I 

i
t

5

brief survey of the history of functional differential equations is given

in [13 ). For sufficient conditions for existence uniqueness, continuity

and continuation to the right, see [1], (4), [i43 ) [ 15] or (16), These condi-

tions are quite similar to the ones for ordinary differential equations.

If we assume further that f(t4wpq)) = f(t g) for all (t,(P) s

R X C and f takes bounded sets of R X C into bounded sets of En)

then every bounded orbit of (2.4) is precompact in C. In fact, even

more is true: for any bounded set B C C, there is a compact set B* in

C such thatxt B for a s t s a+s s i r implies x F B* for
a+r t t S a+s. This in clear because if x(t)l < b for t o [a,a+s],P

then 1 1cti < d for t e [a+r jV+s] and some constant d. This smoothing

of the initial data was exploited by Hale in [1] although he did not use

and did not need a smoothing property as strong as this one.

+ t IExample 2.3 •	 Functional differential equations of neutralw tae. A

general definition of equations of neutral type as well as basic theorems

of existence, uniqueness, continuous dependence and continuation may

be found in [ 16] ( see also [ 4]).  For the purposes of this paper, we

are content to illustrate them in a special case.

With the notation as in Example 2.2, let D,f: R X C -4 En be

continuous,

t 2 .5)	 D(t,(p) _ q)(o) + Bl(t)(p(-rl) +...+ Bk(t)(p(..rk)

where 0 < r S r (if B^ 0)# B  (t) are -uniformly continuous and bounded

for t e R. A function x = x(a,gr) defined and continuous on [ a-r, a+A,) s

to
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A > 0 is said to be a solution of the neutral functional differential

equation

(2.6)
	

dt D(t'xt) = f(t'xt)

with initial value (p at a if xa = T. D(t,xt) is continuously dif-

ferentiable on (a,a+A) and satisfies (2.6) on (a,a+A). We assume that

for any (aocp) e R X CO a solution x(a,,q)) exists on [a-r,^)^ is unique

and x(a,(p) (t) is continuous in (ar,cp, t) . The function u(a..(p, R) .

xa+,r(a'q)) is a process on C.

In general, the solutions of a neutral functioned differential

equation are no smoother than the initial data. In particular, a bounled

orbit in C may not belong to a precompact set in C. To overcome this

difficulty, further conditions were imposed in [4] on the operator D.

More specifically, the operator D is said to be stable if there is a

constant N such that for every function h continuous on R ,, the solu-

tion x(a.F(pO h) .j xa(a.9(pp h) : (p of the equation

D(t,xt) : D(a.,Cp) + h(t)-h(a)

satisfies

I xt( a,aP, h)l S R[!(p ! + sup h( u) - h( a)I	 t i or.
asust

It is shown in [ 4) that the operator D is stable if and only if the
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solutions of the hanogencous equation D( t ) xt) n 0 are uniformly asymptoti-

tally stable.

Now suppose D(t,^I) ' f(t,(p) are a-periodic in t. D is stable

and f takes bouitled sets into bounded sets. Then it is not difficult

to show that an orbit of (2.6) bounded in C is precompact in C. In

fact, if x is the solution corresponding to the bounded orbit, then

t+T

D(t+T,xt+T) " D(Q+T,xa+T) + f f(s,xs)ds
o+T

t
D(t,xt) = D(a,xa) + f f(s,xs)ds

and

D(t+T,xt+T-xt) _ -D(t+T ,xt) + D(t ,xt) + D(v+z,xo+T) - D(QOxQ)

t+T	 a+T
+ ( tf	 - f )f( s)xs)ds

Using the definition of a stable operator D. the uniform continuity of

D(t,q) = in t and the continuity of xQ+T in T, one obtains the re-

sult.

Actually the same proof gives the following result:

Remark 2.1. If K is a Compact subset of C .aid U e7,e 	 is

bounded then U Nt(Q p in preec	 . This latter property is not

necessarily true if K is only a bounded not (compare with Example 2.2)

Under the same hypotheses as above, the solution operator
def

T(t, a )qp = xt(a,q>) has the following interesting, pro erty

1.	

%I
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Remark 2,2, There is a linear operator T,(t;o) and constants K > 0... s r,lr/.,.^rr L.L....L.... ra... .^ rrr..r/rr•yr/Ira w ^a.•..r

a > 0 such that

IT 1% ) a)I % Ke (t "a) F t i

anda nonlinear operator T„(t,g) such that for any bounded rr.^ 	 B C Corr i	 r//r•^•/!ir/r•rr•rrr I - Irr.^^ ^+.r^r .^.^n^rrrulr-II^I•rl r•r rrr^rrrrl.r^+.^,/r.r•nrrllrrlrw^r/s.rl^.r

there is a compact set B* C C such that T(t,oh e B for o i t s o+s,
I	 !	 ,r • Irl,/•/ n ,rr lr err i,•r ,r rrrrrrr•^rllrr„r rrlMl• , //,^llr•,Prrr^

s it r, impl.^.es T t o)^ E B* for o+r i t i o+s andrr.,r+ , /rrl,rrr^r/rr..^•rrralrrMr„f^rlr.r •rir^-rrr/rrn^

T(too) n Tl(t,o) + T2(t1o)

A special case of this result was proved by Hale in [17]. The same proof

gives the more general result stated here.

Examl le2,4. P*Irtial differential equations. Certain types of parabolic

and hyperbolic partial differential equations have been shown to define

processes on appropriate Sobolev spaces (see [18], [19], [203). In the

parabolic case, the solution is generally smoother than the initial data

and a bounded orbit is precompact. In the hyperbolic case, this smooth-

ing effect does not take place. On the other hand, if w* know that a

hyperbolic equation defines a process on two Sobolev spaces,`

with	 C Sf algebraically and topologically and the injection may

completely continuous $ then a bounded orbit in 0 will 1*e preoompaet in

.W. This property has been used effectively in the analysis of the

asymptotic behavior of the solutions of partial differential equations

R

9
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(see [1] 1 [21], [22]) aM we will use it again for periodic processes.

Our objective in this paper is to study the existence of periodic

solutions wid asymptotic bf;havior of periodic processes, For a periodic

process and any fixed t c Ri there is associated a continuous mapping

Tt X -+ X definco by

Tx a U(VPC0)x.

If T  is the nth iterate of T. it follows from ( 2.3) that T'

U(O,rxo) . 	 Since for a periodic process U(o,,-r+kw) • U(ar+kw0 -c )U(ar ,+ kw) +^

U(Q* 'r ) U(U) kw) p it follows that the fixed points of Tk 	correspond to

periodic motions of period kw of the periodic process.

With this motivation, we now turn our attention to the study of dis-

crete d	 callsystemms; namely, the iterates of a continuous mapping

Ts X --+ X„ where X is a Banach space. The ( positive) motion or orbit

Y+(x) through x e X is the sequence Tnx, n • 0,1,2 ' 9.. . A point

y is said to be a li^, t op_^nt of the motion through x if there exists
n

a subsequence n  of inteag eers such that n  -+ as and T kx _+y as

k	 The limmitset L(x) is the set of all ? .imit points of Tn(x) .

Dote that

( 2-7)	 L(x)	 t1 C1 U T°(x)
j wO n=J

t

I

i'	 .

where C1 denotes closure.
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A set M C X is said to bepsi ti, v^ in	 t, if T(M) C= M

and n ati^ vet Invariant if M C: T(M). it is said to be invsrtaut if

T(M) = M; tliat is,, if it is both positively and negatively invariant.

Negative invariance and the axiom of choice implies the existence on M

of a right inverse T-1 to T. Hence we have T n defined for all

integers n (when n is negative T  = (T^ 1) n) with the property that

Tk-j a TY J for all nonnegat ,iwe integers k,j. Thus negative invari-

ance implies the existence of an extension over all integers of each posi.

tine motion through a point of M and the negative extension is contained

in M. Although the following lemma is essentially contained in el],

[2,, [31 0 the proof for the case of discrete motions is especially simple

and is included. The same proof yields the more general result, Lemana 4.1.

Lemma 2,1. If r I(x) it preeompact, then the limit set L(X) is non-

empty.* compact and invariant.

Proofs Ux.) is the intersection (2,7) of a descending sequence of non-

empty compact sets and is therefore nonempty and compact. The continuity

of T implies L(x) is positively invariant. Let y re L(x). Then
n

there is a sequence of integers n j such that n
1 

-00 .9 T ix -4 y as

j	 By the precompactness assumption, we can select a subsequence
n -1

(which we again label as n) such that T ^ x -► z as J -# «. Now
n

z e L(x) and Tz r lim ,^ aT ix = y by the continuity of T, Hence

'.1

L(x) C T(L(x)) which shows L(x) i s invariant:
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We now wiNti to impose on the operator T "smoothing" properties

which will permit T to be the period map as-,oc' ,tted with any of the

periodic procecscu ' mcnti oned in the above examples. Also, one expects

that real processes will be, dissipative for large displaeem,2nts and the

notion of dissipativca ss is naturally associated with boundedness. With

applications in miW, we develop a theory of dissipative processes based

on boundedncss and the smoothing property alluded to above.

R
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3. Dissi ative s htEms-,. Suppose .x,.4°0 	 are Banach spaces,	 -0 t.'
algebraically and topologically and the injection map I taking; .aid into

.56' is continuou.;. SuppoLse T defines a discrete dyuwaical systr-:m on

both -0 and. The symbol 91,(A) denotes the C-neighborhood in ,0

of a subset A of R. The symbol Cl A denotes the closure in
s

of a subset A of r°. If B is a subset of .0.- then r (B)

UxeB Y (x). At times, we need the following hypotheses on T.

Hl) A dissipative er^tr. There exists a bounded set

B C	 such that for each bounded set M C . 	 and x E 	 there is a

• neighborhood 0y C .V of x and an integer N(x,M) such that

Tn(O^ n M] C B for all n i N(x,M).

H2) A smoothness property. For each bi
def

there exists a bounded set A C.0 with B* a

such that, for every e > 0, there is an integer

perty that T 
n 
x e B for 0 i n 9 N, N R n0(g,B),

for n0(C,B) 9 n t N.

Dunded set B C -3 ,

Cl^rA compact in	
I

n0 (E 0 B) with the pro-

implies Tnx a %'^(A)

R

Iy A fixed point property. There is an integer k0 such

that for every closed bounded convex set B C -Q and every integer

k i k0 , if TnCl5fB is bounded for 0 S n 6 k and A Cl B -^ Cl B,

then T  has a fixed point in C'

H4) A smoothness property. For any bounded set B C.0 with

ClY B compact in Y, if r+(B) is bounded in 0 then j' (Cl
Y

B) is

precampact in

r
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Before discussing some of the properties of discrete dynami-

cal systems described by a system satisfying property 11 .0- H4), let us

discuss there hypotheses in connection vith the examples mentioned

above.

Let us consider first the case where M a V = X. Hypotheses

Hl) - H4) becomes

HI) There is a bounded set B C X such that for any x e X,

there is a neighborhood Ox of x and an integer N(x) such that

TnOx 
CB for n ;C N(x) .

H2) For any bounded B C X, there is a compact B* C X such

that for any e > 0 1 there is an n0(e,B) with the property that

T 
n 
x e B for n ?. 0 implies T 

n 
x a %,(B*) for n i nO(eOB).

151 ) There is an integer	 k0	such that for every closed

bounded convex set	 B C X and every integer k 9 k0 , if	 TnB	 is bounded

for	 0 S n S k and	 Tk! B -a B, then	 T 	 has a fixed point in	 B.

HP For any compact set B C X, Y'(B) bounded implies Y (B)

precompact.

In the previous section, it was shown that the operator T

associated with retard-A functional differential equations satisfied

the following conditions

IS) There is a nonnegative integer n0, such that for any

bounded set B C X, there is a compact set B* in X such that Tnx a B'

for 0 9 n;i N, N 9 n0, implies Tnx a B* for no 9 n 9 N.
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Any operator shat	 H',) autumaticOly satisfies HI), N,,), 114).

For instance, 113 follows from the Schauder fixed point theorem,since
k

with k0 = n0 it follows that T 0(B) is contained in a compact ret

of X.	 For operators satisfying H'2), one can es •„ablish the results to

follow under an hypothesis of dissipativeness weaker than H11); in fact,

we will show that it is enough to assume

I

H" )
1

given x e X

n t N(x).

Theorem 3.1.

Furthermore

There is a bounded set B in X with the property that

there is a positive integer N(x) such that T nx e B for

If T satisfies IV), TO'), then T satisfies Hi) -

there is a compact set K in X with the property

that given a compact set H in Xi there is a positive integer N(H)

and an open neighborhood HO of H such that Tn(HO) C K for all

n it n(H).

Proofs From the above remarks, it is only necessary co show that T
	

'. I

satisfying IT, ) implies T satisfies the last property stated in the

theorem. We may always assume B in H'i) is open. Let B* be the corresponding 	 n

compact set in 1) and no the integer in Ij). By the continuity of
T. there is an open neighborhood Ox of x such that Tn(OX) C B for

N(x) S n i N(x)+n0. Therefore, Tn(x)ox C B*, where n(x) = N(x)+n0.

Suppose H is an arbitrary compact set in X. The neighborhoods 
OX'

x e H form a covering of H. Selecting from this covering a finite

covering, we see there is an integer n(H) such that for each O x of

this finite covering there is an i = i(x) such that 0 9 i i n(H) and
	 %I

Ti(0X) C B*. Hence all	 we need to prove the theorem is to show that

there is an integer N(B*) and a compact set K such that Tn(B*) C K
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for n 2: N(B+.)-

There is then R

Tn-k R* for

0 $ j	 n(B*)-

T(B*),•..,Tn R

Let x e B*

least itit-.eger

0ik<J. It

Hence T n x is

(B*), which is

Etnd lot n k n(B4) be any positive integer.

,j, 0 Z j 15 n, such that T n 'j x a B* and

follows by 'what was shown above that

contained in the union K of B*,

compact. This completes the proof.

Remark 3.1. From the above proof, if T satisfies H0"
21

, then T satis-

fies 1111) if there is a bounded Get B in X with the property that

given x e X there is a positive integer N(x) such that T n(x) E B

for N(x) a n s N(x)+n0. It is only necessary to require that Tn(x)

remain in B long enough to "smooth".

When T satisfies H1), H2), then it follows from Theorem 3.1

that, for some integer ki, T  has a fixed point for each n 9 kl (Cor-

ollary 3.2 below). If, in addition, T maps bounded sets into bounded

sets, we can prove a bit more and include a result of Yoshizawa for re-

Larded functional differential equations whose solutions are uniformly

bounded and uniformly ultimately bounded ( see 'Yoshizawa [ 23) or [243)0

The integer no of this corollary is the no of IV). For ordinary

differential equations no = 1 and for retarded functional differential

equations no z 1 if w it r (w is the period and r is the retarda

tion) .

Corollary 3.l- If T satisfies H"1), TO') and maps 'bounded sets into
bounded sets, then T  has a fixed point for each n Z n0.

Proof,. With n a; no we knot that T  is completely continuous. Since

the closed convex hull of a compact ,set is closed, we may assume that the

compact set. X in Theorem 3.1 is convex. Let f = Tn, select	 suft i-
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ently large that fj(K) C K, let G be the. union of K, f(K),...,fj(K),

and let S  be an open ball containing G. Then fk(K) CS for all

k s 0 1 1, ... , and for m sufficiently ] a r, ge f (Sl) c.. K by Theorem

39 1 and thr fact that f is completely continuous. It then follows

from Browler ' s extension in [25] of the Schauder fixed point theorem

that f has a fixed point.

For the neutral equation in Fxar,)ple 2.3, Remark 2.2., implies

that HI) is satisfied by the corresponding operator T. Also, tM4 same

type of argument shows that, on a set B satisfying H3 ), the operator.
k

T 0 is the sum of a contraction and a completely continuous operator

and thus, has the fixed point property (see [16] and [17]). Hypothesis

H4) is the same as Remark 2.1. Thus, we see the eignificance of our

hypotheses for functional differential equations of both retarded and

neutral type.

The case ,0 C 3f, _Q A V. was introduced to treat partial

differential equations and especially hyperbolic equations. The spaces

,Q ,,f are usually chosen so that the injection map Ts_Q -#Y is

completely continuous. For such a siutation hypothesis H 2) is satisfied

by any continuous T since we can tale A s B, n©(g ,B) = 1. Similarly

H3 ) and H4) are satisfied by any continuous T. Therefore, when the in-

jection map is completely continuous, the only hypotheses that will

ever be made on T are continuity and Hl).

The following result is the more general analog of Theoa3.1.

Theorem 3.2. If T satisfied H1), H2), then there is a bounded set
def

A C ,0 such that K = C1^A is compact and, given any compact set

'41

I'll

I
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H C ',tk,erc is a	 .^^,'-ticiE;hbr^r.• tiocd IfO	 of II	 in :o such that for any

e > 0	 and nny bour;dcd set	 M C 0 0 T n[HO n cl^,M] is bounded in

for each	 n x 0	 and there is an integer	 nl(N,M,e) with

T°C H 
0  

n M] c 9i'e (A), n ?. nl(H: Mpe) .

Proof$ Let B be as in Hl) ) A and B* as in 112). Then K = B* is

compact. Let H be an arbitrary c =pact set. Since T is locally

dissipative, for any x c H and any bounded M C	 there is a V -

neighborhood Ox of x and an integer N(x jM) such that Tn Ox n M] C B

for n 9 N(x )M). Selecting from this covering of H a finite cover-

ing, we see there is an integer N(H )M) and a .59-neighborhood 
11  

C e
of H such that Tn[H1 n M] C B for n a N(H)M). Since H is compact

and T is continuous, one can choose a finite covering of H in such

a way that it yields a r-neighborhoodISO of H with HO C Hl and

Tn[ HO ] bounded in C for 0 S n S N(HtM) . Since Tn[ HO n M] C B for

n a n(H^M), this implies Tn[HO n Ci
10

,M] is bounded for n a 0. Using

H2) ) for 'any , S > 0 ' it follows that

T n [ HO n M] C	 (A) for n it N(H,M) + (g , B).g	 n0

If we suppess the dependence on B and let nl(HjMje) = N(H,M) + no(e B),

then the theorem is proved.

Corollary.?. If T satisfies Hl), H2) 0 H^) then there is an integer

kl such that' T  has a fixed point in V for each n a ki.

R	 '

iI.
i
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Theorem 3.2 plies there is an integer n l (A,e) such that Tn('ne A)) C:

92,(A) for	 n kn.,( A,e). Therefore, the continuity of Tn implies

Tn(Cl 'J (A)) C: 
Cl 

,Tn(,^ A)) C. Cl ^2 e(A)Sr

for n i nl( A )e), or T  takes the closed bounded cwvex set 8 into

itself for	 n k ni (A,e). Let kl w max(kG, al(A )e)) where kG is

the integer in H3). From Theorem 3.2 0 Tn(8) is bounded for all n = le

Therefor e ) 	 implies Tn has a fixed point in $ for each n i kl*
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4. Vie 1 init set J.

pothe Jes H1), H2) and

that is globally asyid

generalization of the

and when Y r .V, the

We wish now to snow that it T satisfied hy-

H4), then there is a compact invariant set J

ptoti.call.y stable. The set J is the natm-al,

max1lual. compact invariant set introduced in [8],

set J is the maximal compact invariant set of [12].

Let A C- .0 be the bounded set of Theorem 3.1. Then

K = C1SfA is compact. Let

co

(4.1)	 J n n Tn(K) .
n"O

Of course, since A is not unique, K is not unique, but we can prove

that J is independent of A. Observe first that if J(A) is the set

defined by (4.1), then J(A) C TJ(J(A)) for all j A 1. if Al is

any other bounded set satisfying the same conditions as A of Theorem

3.2 and K1 = ClSrA1, then for any E > 0 there is an n1(K,Kl,g) such

that Tn(A) C % f (A ), Tn(A) C 2^(A) for n 1; nl( K, ,G) • Thus, for
C l	 l	 Kl

any positive sequence 
n^ 

-► 0 as	 -; as, there is a sequence n^ -► +^

as 3 -) co such that T J(A) C ^-0 (Al)., T ^(Al) C %?(A) s J = 1,2,... .

Consequently, there are positive a, -#0 as J -*m such that

TnS (K) = TnI (Cl A) CC' aJ (A) C C1 % .0 (A )V	 ` ej 1

91a

TnJ ( ) C j^ (K) p 	= 1,2,...

Thus, J(K) C Kl, J(Kl) C K. 'Since J(T.) C TJ (J(K)) for &U j it l *Ad
0



k

f•

20

any K, this proves that J is independent. of K.

def
For any bounded set B in ,Q with H w Cl B compact, do-

se

V ne L(H), the limit not of the motion through H. by

0o	 0o

L(H) x n Cl	 U Tn(10 .
jW	 nui

Then y e L(H) means there exist sequences of integers ni and ele-
n

means y4 e H such that ni —► co and T ^y j —+ y as J —+ «. When H

is a singlega. point this is the usual limit set L(x}. Just as for Lemma

2.1, we obtain

.o

Lemma 4.1. if U Tn(H) is precompact in Sf for j sufficiently
n=i

large, then L(H) is a nonempty compact invariant set of .f.

Definition 4.1. A set M in JV is said to be a jLdbal attractor

V) if for each x s .9, Tnx -► M in Y as n -+ C•.

Theorem 4.1. Suppose T satisfies Hl), V, H4), A is the bounded

set in _Q of Theorem 3.1 and. K n C' A. Then J : UK), J is a non-

empty compact invariant set and J is a global attractor

If H is any other compact invariant set in Y, H a CI M for aoms.

bounded M C -Q, then HC J.

Proof: since T is locally dissipative and K is compact, there is an

integer N(A) such that Tn(A) . Tn[ K n A) C B for - n s IF(A) . Thus,

ATH(A)A) is bounded in .g , Hypothesis H4) irQli*s Yqe(A)Cl )

R

I	 I

. n

f
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is precompact in , Ler na 4* 1 implies that 14K) is a nonempty, com-

pact invariant set of V.

Clearly J C L(K). To prove the converse, suppose y c L(K)
n

and T ixi -► y as i -► -v where n  -► oo as	 and each xi a K.

Since Y ( TN(A) K) is precompact in .S^', for any integer j we can find
n -^

a subsequence of the T i x (which we label the same as before) and a
+	 k.j

yj a C1Vy (K) such that T	 x1 -+ yJ as 1 -4 coo But then T yj . y

and thus y e J. Therefore J = L(K).

Now suppose that H is any compact invariant set in Y with

H = Cl M and M bounded in .g. Then H a Tn(H) for every no

Theorem 3.2 implies, for every S > 0, there is an nl(H)me) a 0 such

that Tn(HO n M) c in A A) for n a n1(H,M)S). Taking the closure in

we obtain, for n a nl(H,M,E) ,

H = Tn(H) C: Tn( Cl,(r	 m)) C C1Tn{H0 n M)

C C1 '	 A) C(K)
V	 ^)

for some positive a(e) -r 0 as a - ► 0• This implies H C K.

Now suppose x is an arbitrary element of R. Then

C1y(x) : (X). Theorem 3.2 implies e(x) is bounded in 0 and IY
implies *f (x) is precompact in V  Thus, L(x) is'nonempty ,, compact

and invariant, and L(x) C J. This proves J is a global attractor

and completes the proof of the theorems

'.1

i

a
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Definition 442. Suppose , J C: Sa is an invariant set. We say J is

stable	 (,fit! )r)	 if for, every e > 0, there is a	 b > 0	 such that for

every bounded set	 M	 in ^, there is an integer. no(M)8,e) such that

y c	 J) n M	 imp is s T x a 92	 J) for	 n k no( M) 8.,e) .

Definition 4.3. Suppose J C .Q is an invariant rot.	 We say	 J	 is

wea k]X std (,4 0 ,;')	 if for any	 e > 0, there is a	 b > 0	 such that
if	 %-IJ), then T x a	 %.J) for	 n i 00

t,	 I	 .

13

If	 these two definitions are equivalent.

henna 4.2.	 If J C ,0 is invariant and J	 is compact in	 Sf, then	 J

stable	 ( -Q,Sf) implies	 J	 is	 weakly stable (0,Y),

Proof: If J C .ad is stable	 then for any e > 0,

there is a 8 > 0 such that for every 81 > 00 there is an integer

n (b , b,E;) such that x e %;(J) n ^ ^(J) imp3 ,fea Tax a ^ J)0 1	 8	 81	 6

for n it n0( 810 boe). If J is compact, then there is a 82 > 0 such

that x e %F(J) implies Tax c % J) for 0 i n a n0( , 8,e ). If

	

82 ► 	 a	 al

82 <. b, then x a % (J) ►1 %.(J) implies Tcx a %,(J) for n 1 09

	

8'2	 1 0	 Y► 	 .0If we choose b'1 < 81 so that	 (
J)	

(J), then	 x a ^l(J)
ak11n 	^ 	^

implies T x a e(J)^ that is, J in table

The argument used in the proof of the following result is

similar to me used by LaSalle in [26 ].

I:

'.1

n

%aTheorem 492. if	 T	 satisfies H1), H2), H4) and J as defined in (491),

then	 J is stable (t$,,`) ltd if J C -0, then J is

stable (0,5C) .
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Proof: Assume J is not 	 stable (2,5f). Then for some

Ewhich may be chosen s s	 s esi e> 0 (	 y	 a mall a d r d), there are sequences

of integers n and y c %f( J) n _Q such that n -+ co, y -► I as
^
	 if,	

^^	 8	
n ^l ^	 ^ ^

as j -' 00, T 
n 
y^ a 	 0 S n 9 ny and T	 y^ is not in % g(J).

The yj considered as elements of ,0 may or may not be unbounded.

Since J is compact, we may assume there is a y e J such that

y j -^ y	 as	 j -+ a*. The set H . Cy j$ j : 3-,2 , • • • ,Y) is compact in V .

If	 H	 is bounded in , then it .follows from Theorem 3.2

that for any q > 0 there is an integer n* = n*(H, iii such that

Tn(H) C T n(A) for n Z n*. Thus, r kTn *(H)) is boundedin Hypothesis

H4) implies r&,(Tn*(H)) is precompact. Therefore, Lemma 4.1- implies

Y=f L(H) is nonempty, compact and invariant. Furthermore, r is the

closure in V of a bounded set in Ro Thus, Theorem 4.1 implies r C J.
5f

TAlso, since r +( n*(H)) is precompact Awe may assume (by choosing a sub-

sequence if necessary) that TnJy -i z e 5f as J -^ w. Then z e r C J.

But this choice of the n
j and y j implies that Tz i 41(j)  and

therefore Tz A J. Since J is invariant, this is a contradiction and

the proof of the theorem is complete for the case in which H is bounded

in 0.
If 'H is unbounded in , suppose the y, are ordered in

such a way that y) y j11 —> Go as	 -> co- From Theorem 3.2 for each integer

and real q > 0, there is an integer N(Jon) such that T y j e gen A)

for n i N(Jon). Now we may assume the nj so chosen that nni ;kN(J$n).

Therefore, T y a WI, 	 for'	 = 1,2,... s Let	 . tT lyl,T' y2$*'**).

Then rte, (H*) is bounded and hypothesis H4) implies ^ (H*) in preac act in '*

i

.I



1

i

v	 `

I	 ,3

i

24

n
Therefore, there is a subsequence of the T 'y if necessary and a z

such that Tnjy —► z as J - + co. Since Tz is not in ^?^J), z is^	 g
not in J. But using the same argument as before z c L(H) C J. This

contradiction implies J is stable (,,, 	 The last part of the

theorem follows from Lemma 4.2.
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